A new study from the research group of Dr. John Lewis at the University of Alberta (Edmonton, AB) and the Lawson Health Research Institute (London, ON) has confirmed that “invadopodia” play a key role in the spread of cancer. The study, published in Cell Reports, shows preventing these tentacle-like structures from forming can stop the spread of cancer entirely.
Thanks to advances in medical research and care, cancer can often be treated with high success if detected early. However, after it spreads, cancer becomes much more difficult to treat.
To spread, or “metastasize,” cancer cells must enter the blood stream or lymph system, travel through its channels, and then exit to another area or organ in the body. This final exit is the least understood part of the metastatic process. Previous research has shown cancer cells are capable of producing “invadopodia,” a type of extension that cells use to probe and change their environment. However, their significance in the escape of cancer cells from the bloodstream has been unclear.
The study findings confirm invadopodia play a key role in the spread of cancer. Most importantly, they suggest an important new target for therapy. If a drug can be developed to prevent invadopodia from forming, it could potentially stop the spread of cancer.
“The spread of cancer works a lot like plane travel,” says lead author Dr. Hon Leong, now a Scientist at Lawson Health Research Institute and Western University. “Just as a person boards an airplane and travels to their destination, tumor cells enter the bloodstream and travel to distant organs like the liver, lungs, or brain. The hard part is getting past border control and airport security, or the vessels, when they arrive. We knew that cancer cells were somehow able to get past these barriers and spread into the organs. Now, for the first time, we know how.”
Source: Medical News Today