Novel Approach to Accelerate Metabolism Could Lead to New Obesity Treatment

Body.Overweight.Obese2By manipulating a biochemical process that underlies cells’ energy-burning abilities, investigators at Beth Israel Deaconess Medical Center (BIDMC) have made a novel discovery that could lead to a new therapy to combat obesity and diabetes. Published in the journal Nature, the new findings show that reducing the amount of nicotinamide N-methyltransferase (NNMT) protein in fat and liver dramatically reduces the development of obesity and diabetes in mice.

“With this discovery, we now have a means of metabolic manipulation that could help speed energy production and lead to weight loss,” explains senior author Barbara Kahn, MD, Vice Chair of the Department of Medicine at BIDMC and George Richards Minot Professor of Medicine at Harvard Medical School. “Our findings are particularly exciting because the antisense oligonucleotide [ASO] technology we used to inhibit the NNMT gene in our study is already being used to treat other diseases in humans.”

The new findings hinge on a biochemical mechanism known as a futile cycle, in which cellular reactions are sped up, thereby generating more energy. “We all know people who can seemingly eat whatever they want and not gain weight,” explains Kahn. “Part of the reason for this natural weight control owes to basal cellular metabolism – the body’s inherent rate of burning energy. A futile cycle is one way to speed up energy utilization in cells.”

Check the full article.

Source: Beth Israel Deaconess Medical Center. “Novel approach to accelerate metabolism could lead to new obesity treatment.” ScienceDaily. ScienceDaily, 9 April 2014.

Leave a Comment

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s